Compressive Stress


Stresses in Beams
In a separate article entitled “Structural Analysis of a Beam” there was a brief discussion of stresses and their function in structural analysis.  In this article there will be a more in dept discussion of normal, bending, and shear stress.

Normal Stress
A normal stress is a stress that occurs when a member is loaded by an axial force.  The value of the normal force for any prismatic section is simply the force divided by the cross sectional area.

Normal Stress

A normal stress will occur when a member is placed in tension or compression.  Examples of members experiencing pure normal forces would include columns, collar ties, etc.

Bending Stress

Beam Design

When a member is being loaded similar to that in figure one bending stress (or flexure stress) will result.  Bending stress is a more specific type of normal stress.  When a beam experiences load like that shown in figure one the top fibers of the beam undergo a normal compressive stress.  The stress at the horizontal plane of the neutral is zero.  The bottom fibers of the beam undergo a normal tensile stress.  It can be concluded therefore that the value of the bending stress will vary linearly with distance from the neutral axis.

Bending Stress

Calculating the maximum bending stress is crucial for determining the adequacy of beams, rafters, joists, etc.

Shear Stress
Normal stress is a result of load applied perpendicular to a member.  Shear stress however results when a load is applied parallel to an area.  Looking again at figure one, it can be seen that both bending and shear stresses will develop.  Like in bending stress, shear stress will vary across the cross sectional area.

Shear Stress

Calculating the maximum shear stress is also crucial for determining the adequacy of beams, rafters, joists, etc.

Final Considerations
When doing any kind of beam design using structural design software will greatly ease the entire process of calculating stresses.  There are several different engineering design software packages available for beams, columns, or foundation design.  StruCalc, Enercalc, Risa, and BeamChek will all take in to account normal and shear stresses when doing any kind of beam design.

Fast, Intuitive User Interface

Our straight-forward UI is designed for efficiency, making complex structural calculations easy to navigate with minimal learning curve—so you can focus on design, not deciphering software.

Personalized Onboarding & One-On-One Support

When you need help getting started or expert advice on a complex application, our veteran team of support engineers are just a click or call away.

Extensive Application & Material Database

With hundreds of real-world use cases and a library of common construction materials, StruCalc provides everything you need in one powerful platform.

Pricing & feature comparison:

Top-tier differences: StruCalc Pro:
$89.97/mo
ClearCalcs Pro:
$119/mo
Enercalc:
$169/mo
Personalized Onboarding
1:1 Engineering Support
2024 IBC
User Themes
Concrete Beams
Masonry Beams
Wood Shearwalls
2024 NDS
2021 IBC
2018 IBC
2018 NDS
Imperial Units
Concrete Columns
Metric Units
Steel
Solid Sawn
I-Joists
Glulams
Structural Composite
24+ Load Combinations
LRFD
ASD
Beam & Joist Spans
Live & Dead Loads
Isolated Footings
Continuous Footings
Collar Ties
Embedded Posts
Hip & Valley Beams
Flitch Beam
Stud Walls
Wind, Snow, & Seismic Loads
Advanced Footing Loads
Out of Plane Loading
Multi-span Columns
Bearing Walls
Retaining Walls
Linked Load Tracking
Beam Analysis
Wall Analysis
Masonry Columns
Concrete Walls
Masonry Walls
Wood Hangers
Curved Glulams

See all features

No one else offers as many features as StruCalc. Get more for your money and join thousands of architects and engineers that have chosen StruCalc as their partner for structural calculation software.