Structural Engineers


Wide flange steel columns are used in structural design to add strength and stability to a structure that will support heavy loads. Wide flange steel column are most often used in commercial construction, such as the construction of high rise buildings. A structural engineer has many different types of columns and materials to choose from when designing a high rise building.

Columns Used in the Construction of High Rise Buildings

When designing high rise buildings, structural engineers may utilize several different types of columns to support the structure. When designing a structure, the structural engineer must consider the design of stud walls, laterally loaded columns, and built up columns. He or she must also consider the effects of loading, sheer, and moment on the selected columns of the structure.

Columns may be constructed of steel, wood, concrete, or manmade building materials such as composites, solid sawn lumber, and glulams. The structural engineer considers the limitations and benefits of using each type of column and selects a material that meets the design specifications and budget limitations.

Wide flange steel columns help disperse the weight load of a structure back into the outer walls of the structure, making the building more stable even when fully loaded with furniture, equipment, and people.

Structural engineering involves designing stable structures through the use of various known physical properties and theories. Mathematical equations help the structural engineer design sound structures such as high rise buildings, homes, and bridges.

Structural engineers often utilize structural design software programs to help them sort through the many options available when designing a building. Structural engineering design software helps structural engineers adhere to local, federal, and international building codes while designing a structurally sound building within the client’s specifications and budget.

Structural engineers use wide flange steel columns is designing structures in many different areas of construction. Wide flange steel columns are a cost effective way for structural engineers to design stable, high rise structures. Specific design elements can drastically affect the stability and visual appeal of a structure.

Wide flange steel columns are an important part of the structural engineer’s tool kit when designing high rise buildings. Structural engineers can use structural design software programs to assist them in selecting the proper building materials and design elements to achieve spectacular results.

building columnsengineer designhigh rise buildingsmathematical equationsstructural design softwarestructural engineering designstructural engineers

1 Comment

The Science of Structural Engineering

Posted by Adam Wilson in General Engineering on July 21st, 2008

The science of structural engineering is constantly evolving. Structural engineers continually look to develop new architectural designs to please clients. As new building materials emerge, structural engineers are pushed to integrate these materials into new construction. They must study the way these materials react under the stress of load and predict how to support key areas strategically to maintain the structural integrity of the structure.

The science of structural engineering helps structural engineers build more stable structures while pushing the current limits of design as we know it. By studying the science behind the factors that affect the stability of structures, structural engineers can design and build structures that can withstand the forces of nature and loads, even under extreme circumstances.

Structural engineering relies on the predictability of nature. Forces like wind, water, snow, and weight affect building materials in a predictable manner. The structural engineer takes these reliable principles and designs a system of supports that will resist the warping nature of these elements. Structural engineers design structures to be flexible enough to move and flex without breaking. This requires a delicate balance of design and science.

The science of structural engineering is taught in colleges and universities around the world to prospective structural engineering students. Structural engineering students study the effects of nature on structures and common building materials. They study how a fully loaded building sags and moves in a strong wind. Then, they apply these observations to the structural designs they create after graduation.

Structural engineers apply the science of structural engineering to the structural designs they create in order to produce better structures. Special structural engineers develop designs for structures in earthquake regions. These special designs are crafted to help minimize damage during an earthquake and save lives by preventing the total collapse of a building.

The science of structural engineering involves the principals of physics, geometry, and basic mathematics. Structural engineering is a concrete science, with an artistic element. Structural engineers must also be able to design visually appealing structures according to a client’s specifications and be able to adapt well enough to work with architects and builders as well.

The science of structural engineering affects our everyday lives, but many people never stop to think about the strength and stability of the homes they live in, the office they work at, or the bridge they drive across. Structural engineering enhances the lives of people throughout the world.

architectural designsbuildingconstructiondesign structuresengineeringengineering studentsengineers designstressesstructural engineering softwarestructural engineers

No Comments

State & Federal Building Codes

Posted by Adam Wilson in General Engineering on June 10th, 2008

More about State and Federal Building Codes

State and Federal Building codes are an important part of the construction process. For structural engineers, working knowledge of state and federal building codes is essential. Keeping on top of constant changes made to state and federal building codes can be challenging. Building codes vary from state to state. There are several websites available to help you keep up to date on federal and state building codes. Try these resources to help you stay on top of federal and state building codes.

Federal Building Code Resources
ANSI ( http://www.ansi.org/ ) – American National Standards Institute
ASTM ( http://www.astm.org/ ) – American Society for Testing and Materials
BOCA ( http://www.bocai.org/ )- Building Officials and Code Administrators, International
ICBO ( http://www.icbo.org/ ) – International Conference of Building Officials
ICC( http://www.intlcode.org/ ) – International Codes Council
NCSBCS ( http://www.ncsbcs.org/ ) –  National Conference of States on Building Codes and Standards, Inc.
SBCCI ( http://www.sbcci.org/ ) – Southern Building Code Congress, International
USACE ( http://www.usace.army.mil/inet/usace-docs/ ) – United States Army Corps of Engineers Publications Page

State Specific Resources for State Building Codes
This is not a complete listing of structural engineering associations for every state. If your state Is not listed below, an Internet search will bring up your state’s SEA website.

SEAOAL  ( http://www.seaoal.com/ )- Structural Engineering Association of Alabama
SEAOA ( http://www.primenet.com/~seaoa ) – Structural Engineering Association of Arizona
SEAOSC ( http://www.seaint.org/seaosc/index.asp ) – Structural Engineering Association of Southern California
SEAOC ( http://www.seaoc.org/ ) – Structural Engineering Association of California
SEAONC ( http://www.seaonc.org/ ) – Structural Engineering Association of Northern California
SEAOCC ( http://www.seaint.org/seaocc1.htm ) – Structural Engineering Association of Central California
SEAOSD  ( http://www.seaint.org/seaosd/seaosd1home.htm )- Structural Engineering Association of San Diego
SEAC  ( http://www.seacolorado.com/ )- Structural Engineering Association of Colorado
SEAOH ( http://www.eng.hawaii.edu/~seaoh ) – Structural Engineering Association of Hawaii
SEAOI ( http://www.seaoi.org/ )- Structural Engineering Association of Illinois
SEAM ( http://www.seam.org/ ) – Structural Engineering Association of Maine
SENH ( http://www.senh.org/ ) – Structural Engineers of New Hampshire
SEANM – Structural Engineers Association of New Mexico
SEAONY – Structural Engineering Association of New York
SEAO – Structural Engineering Association of Oregon
SEAOT – Structural Engineering Association of Texas
SEAU – Structural Engineering Association of Utah
SEAW – Structural Engineering Association of Washington

Subscribing to a trade publication or state-sponsored newsletter for builders is also a great way to keep up with state and federal building codes. If you have any information on changes to any of these links or would like to have your own state listed please contact me at adam@strucalc.com

building officials and code administratorsinternational conference of building officialsstructural engineeringstructural engineers

No Comments

Designing Earthquake Safe Buildings and Structures

Posted by Adam Wilson in General Engineering on May 12th, 2008

Designing Earthquake Safe Buildings and Structures

Buildings and structures are susceptible to the ravaging devastation of earthquakes. Great amounts of research have been performed to determine what types of buildings and structures are able to withstand an earthquake and how structural engineers can design earthquake-safe buildings and structures for the future.

Flexibility is Key

One of the most important physical traits of earthquake safe buildings and structures is flexibility. A rigid structure will crumble and collapse during the movement caused by an earthquake. Taller structures are inherently more flexible than two or three story buildings and structures. Shorter buildings and structures require greater amounts of reinforcement to withstand the forces of an earthquake.

Materials Matter

The construction materials used in buildings and structures can significantly help reduce the amount of damage caused during an earthquake. Wood and steel have greater flexibility than stucco, unreinforced concrete, or masonry.

Earthquake Reinforcement

Buildings and structures can be created with additional strategically placed beams that help transfer the energy of the sway of the building during a quake to the base of the structure and the surrounding earth.  Reinforced beams and trusses can also help prevent warping and collapse of buildings and structures during and after an earthquake.

Earthquake-Proof Foundations

Specially designed foundations for buildings and structures can also help limit damage. Foundational plates can be layered to allow for a sliding movement during a quake, providing a stable base for the structure throughout the movement. Another type of foundational alteration is the addition of flexible cushions in the foundation. These flexible cushions absorb movement and energy during an earthquake allowing the structure to remain intact.

Soil Types Can Limit Damage

Softer soils and surrounding earth that contains a high amount of moisture are more prone to induce greater amounts of structural damage during an earthquake. This is partly due to the properties of resonance as energy passes through the soil during the shocks of the quake. Providing additional solid breaks in the soil surrounding the foundation and building on solid earth, such as bedrock, greatly reduces the likelihood of large amounts of damage to structures and buildings.

Saving Lives with Planned Failure

Some structures and buildings are designed to fail in a certain way in the event of an earthquake. These planned failings allow for protection of interior spaces where people are likely to be located. The structures are also designed to limit the amount of rubble and debris that is deposited around the foundation of the structure to keep from damaging nearby buildings.

As advances in structural engineering are made and new construction materials emerge, earthquake-safe buildings and structures may soon be a reality.

beamsearthquake proofmasonryreinforcementsoil typesstructural engineersunreinforced concrete

9 Comments

Precision & Collaboration in Structure Construction

Posted by Adam Wilson in General Engineering on November 20th, 2007

Structural engineers have the task of helping an architect design a structure that will resist the forces of nature, remain stable and dissipate energy appropriately.  This task is often made easier by the use of computer assisted design and special calculating programs. With today’s technology, nearly any design problem can be solved by a structural engineer.

These technological advances have resulted in amazing and unusual architectural designs that would not have been possible 50 years ago. Continuing advances in the field of structural engineering allow architects to continue to push the envelope for innovative building designs.

When constructing a basic design for any structure, the structural engineer and the architect must consider the affects the forces of nature have on a building. High winds, heavy rainfall and intense heat from the sun can all affect the stability of a building. In some cases, buildings are designed to withstand earthquakes, tsunamis and terrorist attacks.

These forces, along with the affects of gravity itself, all must by calculated using the laws of physics in order to create a stable structure strong enough to withstand the elements for many years. All public buildings must be built to withstand certain capacity loads that will be present once furniture, equipment and people are habiting the building. Public buildings must also be constructed in a way that limits the spread of fire and provides for emergency exits from every floor.

The strength of a structure is described as the ability of the individual structural elements to withstand the load that is applied. These structural elements comprise the structural system. The stability of a structure is the capability of a structural system to transmit the energy of various loads safely to the ground.

Strength and stability are the two key elements of any structure. If a flaw is calculated into the design of a building, strength and stability will be compromised and the structure may come crashing down. By properly spacing support beams, bracing angles and anchoring the structure to the earth, strength and stability are added.

Perfection during the construction period is equally as important as the design of a building. One miscalculated floor beam span, two missing anchor bolts or a single missing support beam can weaken the structure to failure. The construction crew must complete the building of the structure precisely, in accordance with the architect’s plans.

Cooperation of experienced individuals must take place from design to construction for a structure to remain stable and strong. This combined effort has resulted in some truly magnificent architectural creations around the world.

Fast, Intuitive User Interface

Our straight-forward UI is designed for efficiency, making complex structural calculations easy to navigate with minimal learning curve—so you can focus on design, not deciphering software.

Personalized Onboarding & One-On-One Support

When you need help getting started or expert advice on a complex application, our veteran team of support engineers are just a click or call away.

Extensive Application & Material Database

With hundreds of real-world use cases and a library of common construction materials, StruCalc provides everything you need in one powerful platform.

Pricing & feature comparison:

Top-tier differences: StruCalc Pro:
$89.97/mo
ClearCalcs Pro:
$119/mo
Enercalc:
$169/mo
Personalized Onboarding
1:1 Engineering Support
2024 IBC
User Themes
Concrete Beams
Masonry Beams
Wood Shearwalls
2024 NDS
2021 IBC
2018 IBC
2018 NDS
Imperial Units
Concrete Columns
Metric Units
Steel
Solid Sawn
I-Joists
Glulams
Structural Composite
24+ Load Combinations
LRFD
ASD
Beam & Joist Spans
Live & Dead Loads
Isolated Footings
Continuous Footings
Collar Ties
Embedded Posts
Hip & Valley Beams
Flitch Beam
Stud Walls
Wind, Snow, & Seismic Loads
Advanced Footing Loads
Out of Plane Loading
Multi-span Columns
Bearing Walls
Retaining Walls
Linked Load Tracking
Beam Analysis
Wall Analysis
Masonry Columns
Concrete Walls
Masonry Walls
Wood Hangers
Curved Glulams

See all features

No one else offers as many features as StruCalc. Get more for your money and join thousands of architects and engineers that have chosen StruCalc as their partner for structural calculation software.