The process used for determining the adequacy of a wood, steel, or even a concrete beam is essentially the same. Once a beam has been selected the method is as follows:
- Determine the loads
- Calculate the stresses
- Check the allowable stresses against the actual stresses.
Determine the Loads
The first step in the structural analysis of a beam is determining the amount of load, or weight the beam is going to support. There are two major categories of loads:
Live Loads – A live load is a type of load that is temporarily placed on a structure (i.e. loads from snow, wind, vehicles, etc.). The magnitude of live loads will be defined or referenced in a local building code.
Dead Loads – are loads permanently attached to a structure (i.e. loads from building materials, furniture, etc.). Sometimes the weights of materials are exactly known and can be added together to determine the total dead load. More often the dead load is assumed and given an approximate weight.
Calculating the Stresses
There are two types of stresses that are typically calculated when performing a beam design: bending stress and shear stress. A more complete definition of both bending stress and shear stress can be found here. In order to calculate the bending and shear stresses it will be first necessary to calculate the maximum bending moment and maximum shear that occurs in the beam.
The maximum moment and shear will most likely occur at different locations, and the process used to determine their value will be defined in a separate article. The other two pieces of information needed to determine the stresses will be the section modulus and cross sectional area of the beam being used. The section modulus and cross sectional area can be calculated, or in most cases can be looked up in tables (like in the National Design Specification (NDS) for wood beams, or the AISC Steel Manual for steel beams). Once all the information has been tabulated the following equations can be used to determine the nominal maximum bending stress and nominal maximum shear stress:

Compare Actual Stresses against Allowable Stresses
In most cases the allowable stresses are tabulated in a design manual of some sorts (like in the NDS for wood, or the AISC Steel Manual for steel). Once the allowable stresses have been located determining the adequacy of a beam is simply a matter of comparing the actual stresses to the allowable stresses. So, a beam is adequate if the following is true:

Other Considerations
One major consideration not discussed in this article is that of deflection, or sag in the beam. A beam might be strong enough structurally, but might deflect so much that it effects the actual performance of the beam. Deflection is a calculation that is very important and will be addressed in a separate article.
Another consideration when doing any kind of beam design is that of using structural design software. There are several different engineering design software packages available for beams, columns, or foundation design. StruCalc, Enercalc, Risa, and BeamChek are a few examples of those structural design software packages.
Why Choose StruCalc?
Fast, Intuitive User Interface
Our straight-forward UI is designed for efficiency, making complex structural calculations easy to navigate with minimal learning curve—so you can focus on design, not deciphering software.
Personalized Onboarding & One-On-One Support
When you need help getting started or expert advice on a complex application, our veteran team of support engineers are just a click or call away.
Extensive Application & Material Database
With hundreds of real-world use cases and a library of common construction materials, StruCalc provides everything you need in one powerful platform.
Powerful Solutions For Every Project


Beams & Columns
- Wood
- Concrete
- LVL & Glulam
- Masonry
- Steel

Retaining Walls
- Gravity Retaining Walls
- Cantilever Retaining Walls
- Counterfort Retaining Walls

Posts & Footings
- Isolated Footings
- Continuous Footings
- Embedded Posts

Roofs
- Roof Beams
- Roof Rafters
- Hip & Valley Beams
- Collar Ties
- I-Joists

Floors
- Floor Beams
- Floor Joists

Decks
- Deck Footings
- Deck Beams

Walls & Framing
- Shear wall
- Stud Wall
- Bearing Wall
Pricing & feature comparison:
Top-tier differences: |
StruCalc Pro: $89.97/mo |
ClearCalcs Pro: $119/mo |
Enercalc: $169/mo |
---|---|---|---|
Personalized Onboarding | |||
1:1 Engineering Support | |||
2024 IBC | |||
User Themes | |||
Concrete Beams | |||
Masonry Beams | |||
Wood Shearwalls | |||
2024 NDS | |||
2021 IBC | |||
2018 IBC | |||
2018 NDS | |||
Imperial Units | |||
Concrete Columns | |||
Metric Units | |||
Steel | |||
Solid Sawn | |||
I-Joists | |||
Glulams | |||
Structural Composite | |||
24+ Load Combinations | |||
LRFD | |||
ASD | |||
Beam & Joist Spans | |||
Live & Dead Loads | |||
Isolated Footings | |||
Continuous Footings | |||
Collar Ties | |||
Embedded Posts | |||
Hip & Valley Beams | |||
Flitch Beam | |||
Stud Walls | |||
Wind, Snow, & Seismic Loads | |||
Advanced Footing Loads | |||
Out of Plane Loading | |||
Multi-span Columns | |||
Bearing Walls | |||
Retaining Walls | |||
Linked Load Tracking | |||
Beam Analysis | |||
Wall Analysis | |||
Masonry Columns | |||
Concrete Walls | |||
Masonry Walls | |||
Wood Hangers | |||
Curved Glulams |
Packed with Features
Best pricing in the industry
No one else offers as many features as StruCalc. Get more for your money and join thousands of architects and engineers that have chosen StruCalc as their partner for structural calculation software.